$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
$\sec \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$
$\cos \left( {\frac{\pi }{8} - \frac{\alpha }{2}} \right)$
$\tan \left( {\frac{\alpha }{2} - \frac{\pi }{8}} \right)$
$\cot \left( {\frac{\alpha }{2} - \frac{\pi }{2}} \right)$
If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :
If $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ then $\sin \alpha + \cos \alpha $ and $\sin \alpha - \cos \alpha $ must be equal to
The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty $ terms is equal to-
The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :
If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $