3.Trigonometrical Ratios, Functions and Identities
easy

If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

A

$4\sin A\,\,\cos B\,\,\cos C$

B

$4\cos A$

C

$4\sin A\,\cos A$

D

$4\cos A\,\cos B\,\sin C$

Solution

(d) $\sin 2A + \sin 2B\, – \sin 2C$ 

$= 2\sin A\cos A + 2\cos (B + C)\sin (B – C)$

$\{ \because A + B + C = \pi ,\,\therefore \,B + C = \pi  – A,\cos (B + C) = \cos (\pi  – A),$ $\cos (B + C) = – \cos A,\,\sin (B + C) = \sin A\} $

$ = 2\cos A\,\,[\sin A – \sin (B – C)]$

$ = 2\cos A\,[\sin (B + C) – \sin (B – C)]$ 

$ = 2\cos A.2\cos B.\sin C$

$ = 4\cos A.\,\cos B.\,\sin C$.

Trick : First put $A = B = C = {60^o}$ for, these values. 

Options $(a)$ and $ (d)$ satisfies the condition, Now put $A = B = 45^\circ $ and $c = {90^o}$. 

Then only $(d)$ satisfies. Hence $(d)$ is the answer.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.