- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to
A
$4\sin A\,\,\cos B\,\,\cos C$
B
$4\cos A$
C
$4\sin A\,\cos A$
D
$4\cos A\,\cos B\,\sin C$
Solution
(d) $\sin 2A + \sin 2B\, – \sin 2C$
$= 2\sin A\cos A + 2\cos (B + C)\sin (B – C)$
$\{ \because A + B + C = \pi ,\,\therefore \,B + C = \pi – A,\cos (B + C) = \cos (\pi – A),$ $\cos (B + C) = – \cos A,\,\sin (B + C) = \sin A\} $
$ = 2\cos A\,\,[\sin A – \sin (B – C)]$
$ = 2\cos A\,[\sin (B + C) – \sin (B – C)]$
$ = 2\cos A.2\cos B.\sin C$
$ = 4\cos A.\,\cos B.\,\sin C$.
Trick : First put $A = B = C = {60^o}$ for, these values.
Options $(a)$ and $ (d)$ satisfies the condition, Now put $A = B = 45^\circ $ and $c = {90^o}$.
Then only $(d)$ satisfies. Hence $(d)$ is the answer.
Standard 11
Mathematics