If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

  • A

    $4\sin A\,\,\cos B\,\,\cos C$

  • B

    $4\cos A$

  • C

    $4\sin A\,\cos A$

  • D

    $4\cos A\,\cos B\,\sin C$

Similar Questions

If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$

$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$

and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then

Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $

$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $ is equal to

  • [IIT 1966]

$\sin 4\theta $ can be written as