$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
$\cos A$
$0$
$\sqrt 3 \sin A$
$\sqrt 3 \cos A$
If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then ${\cos ^2}(\theta - \phi ) = $
The value of $\sum_{r-1}^{18} cos^2(5r)^o,$ where $x^o $ denotes the $x$ degree, is equals to
Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$
The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is
If $x + y = 3 - cos4\theta$ and $x - y = 4 \,sin2\theta$ then