3.Trigonometrical Ratios, Functions and Identities
easy

If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is

A

$\frac{1}{8}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

B

$\frac{3}{2}\left( {a + \frac{1}{a}} \right)$

C

$\frac{1}{2}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

D

$\frac{1}{3}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$

Solution

(c) $\because$ $\;\cos 3\theta  = 4{\cos ^3}\theta  – 3\cos \theta $ 

$\therefore \cos 3\theta = 4\frac{1}{{{2^3}}}{\left( {a + \frac{1}{a}} \right)^3} – 3\frac{1}{2}\left( {a + \frac{1}{a}} \right)$

$ \Rightarrow \cos 3\,\theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right)\,\left[ {{{\left( {a + \frac{1}{a}} \right)}^2} – 3} \right]$ 

==> $\cos 3\theta = \frac{1}{2}\left( {{a^3} + \frac{1}{{{a^3}}}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.