$\frac{{\cos A}}{{1 - \sin A}} = $

  • A

    $\sec A - \tan A$

  • B

    ${\rm{cosec}}\,A + \cot A$

  • C

    $\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$

  • D

    $\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$

Similar Questions

If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $

If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $

If $3\cos \theta  + 4\sin \theta  = 5$ then $3\sin \theta  - 4\cos \theta $ is

If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then ${\cos ^2}(\theta - \phi ) = $

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $