3.Trigonometrical Ratios, Functions and Identities
easy

$\frac{{\cos A}}{{1 - \sin A}} = $

A

$\sec A - \tan A$

B

${\rm{cosec}}\,A + \cot A$

C

$\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$

D

$\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$

Solution

(d) $\frac{{\cos A}}{{1 – \sin A}} = \frac{{\cos A(1 + \sin A)}}{{{{\cos }^2}A}} = \frac{{(1 + \sin A)}}{{\cos A}}$

$ = \frac{{{{\left( {\cos \frac{A}{2} + \sin \frac{A}{2}} \right)}^2}}}{{\left( {\cos \frac{A}{2} + \sin \frac{A}{2}} \right)\,\left( {\cos \frac{A}{2} – \sin \frac{A}{2}} \right)}} $

$= \frac{{\cos \frac{A}{2} + \sin \frac{A}{2}}}{{\cos \frac{A}{2} – \sin \frac{A}{2}}}$

$ = \frac{{1 + \tan \frac{A}{2}}}{{1 – \tan \frac{A}{2}}}$, $\left( {{\rm{Dividing}}\,{N^r}\,{\rm{and}}\,{D^r}\,{\rm{by}}\,\cos \frac{A}{2}} \right)$

$ = \tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.