$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
$\cos A$
$0$
$\sqrt 3 \sin A$
$\sqrt 3 \cos A$
यदि ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ तब $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $
दी गई आकृति में $\theta_1+\theta_2=\frac{\pi}{2}$ तथा
$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$ है। यदि $\triangle \mathrm{CAB}$ का क्षेत्रफल
$2 \sqrt{3}-3$ वर्ग इकाई है, जब $\frac{\theta_2}{\theta_1}$ अधिकतम है, तो
$\triangle \mathrm{CED}$ का परिमाप (इकाई में) बराबर है :
माना $\cos (\alpha+\beta)=\frac{4}{5}$ और $\sin (\alpha-\beta)=\frac{5}{13},$ जहाँ $0 \leq \alpha, \beta \leq \frac{\pi}{4}$ तो $\tan 2 \alpha$ बराबर है
यदि $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $ तथा $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, तब $\theta$ का मान होगा
$\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}\sin \frac{{7\pi }}{{14}}\sin \frac{{9\pi }}{{14}}\sin \frac{{11\pi }}{{14}}\sin \frac{{13\pi }}{{14}}$ का मान होगा