$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $
$0$
$\frac{1}{2}$
$\frac{1}{4}$
$ - \frac{1}{8}$
જો $\tan A = \frac{1}{2},$ તો $\tan 3A = $
$\cot {70^o} + 4\cos {70^o} = . . .$
$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
સાબિત કરો કે : $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
જો $\tan \alpha = \frac{1}{7}$ અને $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, તો $2\beta = . . . .$