ધારો કે $\theta $ અને $\phi (\ne 0)$ ની કિમત એવી હોય કે જેથી $sec\,(\theta + \phi ),$ $sec\,\theta $ અને $sec\,(\theta - \phi )$ સમાંતર શ્રેણી માં થાય. જો $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ કોઈક $k,$ માટે હોય તો $k$ =
$ \pm \sqrt 2 $
$ \pm 1 $
$ \pm \frac{1}{{\sqrt 2 }}$
$ \pm 2 $
$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ =
જો $\sin \alpha = \frac{{336}}{{625}}$ અને $450^\circ < \alpha < 540^\circ ,$ તો $\sin \left( {\frac{\alpha }{4}} \right) = $
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} = $ (કે જ્યાં $x$ એ બીજા ચરણમાં છે.)
${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8}$ =
જો $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right),$ તો $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ ની કિમંત મેળવો.