$(\sec 2A + 1){\sec ^2}A = $
$\sec A$
$2\sec A$
$\sec 2A$
$2\sec 2A$
The value of $cosec \frac{\pi }{{18}} - \sqrt 3 \,sec\, \frac{\pi }{{18}}$ is a
The value of ,$\sqrt 3 \, cosec\, 20^o - sec\, 20^o $ is :
If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is
$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ then
If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0,$ then $\cot \,\left( {\frac{{x + y}}{2}} \right) = $