$(\sec 2A + 1){\sec ^2}A = $
$\sec A$
$2\sec A$
$\sec 2A$
$2\sec 2A$
The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is
Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$
The expression $\frac{{{{\tan }^2}20^\circ - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to
$cot 5^o$ -$tan5^o$ -$2$ $tan10^o$ -$4$ $tan 20^o$ -$8$ $cot40^o$ is equal to
Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$