$\frac{{\sec \,8\theta - 1}}{{\sec \,4\theta - 1}}$ is equal to
$tan\, 2\theta \,cot \,8\theta$
$tan \,8\theta\, tan \,2\theta$
$cot\, 8\theta \,cot \,2\theta$
$tan \,8\theta\, cot\, 2\theta$
If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then ${\cos ^2}(\theta - \phi ) = $
Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$
$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, then $\theta =$ .......$^o$
If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $