3.Trigonometrical Ratios, Functions and Identities
normal

${\sin ^4}\frac{\pi }{8} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $

A

$\frac{1}{2}$

B

$\frac{1}{4}$

C

$\frac{3}{2}$

D

$\frac{3}{4}$

Solution

$\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}$

$=\frac{1}{4}\left[\left(2 \sin ^{2} \frac{\pi}{8}\right)^{2}+\left(2 \sin ^{2} \frac{3 \pi}{8}\right)^{2}\right]$

$\quad+\frac{1}{4}\left[\left(2 \sin ^{2} \frac{\pi}{8}\right)^{2}+\left(2 \sin ^{2} \frac{3 \pi}{8}\right)^{2}\right]$

$=\frac{1}{4}\left[\left(1-\cos \frac{\pi}{4}\right)^{2}+\left(1-\cos \frac{3 \pi}{4}\right)^{2}\right]$

$\quad+\frac{1}{4}\left[\left(1-\cos \frac{\pi}{4}\right)^{2}+\left(1-\cos \frac{3 \pi}{4}\right)^{2}\right]$

$=\frac{1}{4}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right]$

$+\frac{1}{4}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right]$

$=\frac{1}{4}(3)+\frac{1}{4}(3)=\frac{3}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.