$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
$\sec A + \tan A$
$\tan \left( {\frac{\pi }{4} - A} \right)$
$\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$
$\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$
If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to
The exact value of $cos^273^o + cos^247^o + (cos73^o . cos47^o )$ is
$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
If $a\,\cos 2\theta + b\,\sin 2\theta = c$ has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :