$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
$\sec A + \tan A$
$\tan \left( {\frac{\pi }{4} - A} \right)$
$\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$
$\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$
If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$
If $2\tan A = 3\tan B,$ then $\frac{{\sin 2B}}{{5 - \cos 2B}}$ is equal to
Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
Which of the following functions have the maximum value unity ?
$2\cos x - \cos 3x - \cos 5x = $