$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $

  • A

    $\sec A + \tan A$

  • B

    $\tan \left( {\frac{\pi }{4} - A} \right)$

  • C

    $\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$

  • D

    $\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$

Similar Questions

If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to

The exact value of $cos^273^o  + cos^247^o  + (cos73^o  . cos47^o )$ is

$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $

If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :