$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
$\sec A + \tan A$
$\tan \left( {\frac{\pi }{4} - A} \right)$
$\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$
$\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$
यदि $\alpha + \beta - \gamma = \pi ,$ तो ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma $ बराबर है
${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $
$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $
यदि $A + B + C = \pi \,(A,B,C > 0)$ तथा $C$ अधिककोण है, तब
यदि $\alpha + \beta + \gamma = 2\pi ,$ तो