$P, Q$ and $R$ are the centres and ${r_1},\,\,{r_2},\,\,{r_3}$ are the radii respectively of three co-axial circles, then $QRr_1^2 + RP\,r_2^2 + PQr_3^2$ is equal to

  • A

    $PQ\;.\,QR\,.\,RP$

  • B

    $ - PQ\,.\,QR\,.\,RP$

  • C

    $P{Q^2}.Q{R^2}.R{P^2}$

  • D

    None of these

Similar Questions

The number of common tangent$(s)$ to the circles $x^2 + y^2 + 2x + 8y - 23 = 0$ and $x^2 + y^2 - 4x - 10y + 19 = 0$ is :

The number of common tangents to the circles ${x^2} + {y^2} = 4$ and ${x^2} + {y^2} - 6x - 8y = 24$ is

  • [IIT 1998]

If the circles ${x^2} + {y^2} = {a^2}$and ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ touch each other externally, then

A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of  circle $C_2$ is-

If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is

  • [IIT 2000]