- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If the circle ${x^2} + {y^2} + 6x - 2y + k = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2x - 6y - 15 = 0,$ then $k =$
A
$21$
B
$-21$
C
$23$
D
$-23$
Solution
(d) $2{g_2}({g_1} – {g_2})\, + 2{f_2}({f_1} – {f_2}) = {c_1} – {c_2}$
$2(1)\,\,(3 – 1) + 2( – 3)\,\,( – 1 + 3) = k + 15$
$4 – 12 = k + 15$ or $ – 8 = k + 15\, $
$\Rightarrow \,k = – 23$.
Standard 11
Mathematics