$P(A \cup B) = P(A \cap B)$ તો જ શક્ય બને જો $P(A)$ અને $P(B)$ વચ્ચે .. . . પ્રકારનો સંબંધ બને.
$P(A) = P(\bar A)$
$P\,(A \cap B) = P(A' \cap B')$
$P\,(A) = P\,(B)$
એકપણ નહિ.
એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો.
જો $A$ અને $B$ બે ઘટનાઓ હોય, તો નીચેના પૈકી કઈ સાચી નથી.
નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
બે ઘટનાઓ $A$ અને $B$ ની સંભાવનાઓ અનુક્રમે $0.25$ અને $0.50$ છે. $A$ અને $B$ બંને એક સાથે થવાની સંભાવના $0.14$ છે. તો $A$ અને $B$ માંથી એક પણ ઘટના ન બને તેની સંભાવના કેટલી?
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .