વિર્ધાર્થીંને પ્રથમ, દ્વિતીય કે તૃત્તીય ગ્રેડમાં પાસ થાય કે ઘટનાઓ $A, B$ અને $C$ ની સંભાવનાઓ અનક્રમે $1/10, 3/5$ અને $1/4$ હોય, તો તે નાપાસ (ચોથા ગ્રેડ) થાય તેની સંભાવના ……. છે.
જો $A$ અને $B$ એ બે સ્વત્રંત ઘટનાઓ એવી છે કે જેથી $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ થાય તો $P(A \cap B)$ ની કિમત મેળવો.
ત્રણ વ્યક્તિ $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, તો આપેલ પૈકી કયું વિધાન અસત્ય છે .
ભૌતિકશાસ્ત્રમાં નાપાસ થવાની શક્યતા $20\%$ છે. અને ગણિતશાસ્ત્રમાં નાપાસ થવાની શક્યતા $10\%$ છે. તો ઓછામાં ઓછા એક વિષયમાં નાપાસ હોવાની સંભાવના કેટલા ............. $\%$ થાય ?