$P(A \cup B) = P(A \cap B)$ यदि और केवल यदि $P(A)$ और $P(B)$ के बीच सम्बन्ध हैं
$P(A) = P(\bar A)$
$P\,(A \cap B) = P(A' \cap B')$
$P\,(A) = P\,(B)$
इनमें से कोई नहीं
दी गई घटनाएँ $A$ और $B$ ऐसी हैं $,$ जहाँ $P ( A )=\frac{1}{4}, P ( B )=\frac{1}{2}$ और $P ( A \cap B )=\frac{1}{8}$ तब $P ( A -$ नहीं और $B$ -नहीं $)$ ज्ञात कीजिए।
यदि $A$ व $B$ दो घटनायें हैं। उनमें से ज्यादा से ज्यादा एक घटना के घटित होने की प्रायिकता है
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = P\,(A \cap B),$ तो सत्य सम्बन्ध है
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E -$ नहीं और $F-$ नहीं)।