$P(A \cup B) = P(A \cap B)$ यदि और केवल यदि $P(A)$ और $P(B)$ के बीच सम्बन्ध हैं
$P(A) = P(\bar A)$
$P\,(A \cap B) = P(A' \cap B')$
$P\,(A) = P\,(B)$
इनमें से कोई नहीं
एक ताश की गड्डी में से एक ताश का पत्ता यदृच्छया निकाला जाता है। इस पत्ते के लाल अथवा बेगम होने की प्रायिकता है
घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है
दो घटनाओं $A$ तथा $B$ में से कम से कम एक के घटित होने की प्रायिकता $0.6$ है। यदि घटनाओं $A$ तथा $B$ के साथ-साथ घटित होने की प्रायिकता $0.2$ हो, तो $P\,(\bar A) + P\,(\bar B) = $
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।
यदि प्रथम $100$ धनात्मक पूर्णांकों से एक पूर्णांक यदृच्छया चुना जाये तो उसके $4$ या $6$ का गुणज होने की प्रायिकता है