$P(A \cup B) = P(A \cap B)$ यदि और केवल यदि $P(A)$ और $P(B)$ के बीच सम्बन्ध हैं
$P(A) = P(\bar A)$
$P\,(A \cap B) = P(A' \cap B')$
$P\,(A) = P\,(B)$
इनमें से कोई नहीं
यदि ${A_1},\,{A_2},...{A_n}$ कोई $n$ घटनायें हैं, तो
दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
दो दी हूई घटनाओं $A$ व $B$ के लिए $P\,(A \cap B)$ का मान है
यदि $A$ तथा $B$ दो स्वतंत्र घटनाएँ हो, जहाँ $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ तो $P$ (न $A$ और न $B$) ज्ञात कीजिए
किन्ही भी दो स्वतन्त्र घटनाओं ${E_1}$ व ${E_2},$ के लिए $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ है