$\sim (p \vee q)$ is equal to
$\sim p\; \vee \sim q$
$\sim p\; \wedge \sim q$
$\sim p \vee q$
$p\; \vee \sim q$
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
Which of the following statement is a tautology?
If $P \Rightarrow \left( {q \vee r} \right)$ is false, then the truth values of $p, q, r$ are respectively