$\sim (p \vee q)$ is equal to
$\sim p\; \vee \sim q$
$\sim p\; \wedge \sim q$
$\sim p \vee q$
$p\; \vee \sim q$
(b)$\sim (p \vee q) \equiv \;\sim p\; \wedge \sim q$.
The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $p \nabla q \Rightarrow(( p \nabla$q) $\nabla r$ ) is a tautology. Then (p $\nabla q ) \Delta r$ is logically equivalent to
The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to
The negative of $q\; \vee \sim (p \wedge r)$ is
The statement "If $3^2 = 10$ then $I$ get second prize" is logically equivalent to
Confusing about what to choose? Our team will schedule a demo shortly.