The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to
$p \Rightarrow q$
$q \Rightarrow p$
$\sim(p \Rightarrow q)$
$\sim(q \Rightarrow p)$
Let $p$ and $q$ denote the following statements
$p$ : The sun is shining
$q$ : I shall play tennis in the afternoon
The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :
The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to: