The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to

  • [JEE MAIN 2022]
  • A

    $p \Rightarrow q$

  • B

    $q \Rightarrow p$

  • C

    $\sim(p \Rightarrow q)$

  • D

    $\sim(q \Rightarrow p)$

Similar Questions

Let $p$ and $q$ denote the following statements
$p$ : The sun is shining
$q$ : I shall play tennis in the afternoon

The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is 

  • [AIEEE 2012]

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :

  • [JEE MAIN 2015]

The inverse of the proposition $(p\; \wedge \sim q) \Rightarrow r$ is

The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to

  • [JEE MAIN 2019]

The Boolean expression $(p \wedge \sim q) \Rightarrow(q \vee \sim p)$ is equivalent to:

  • [JEE MAIN 2021]