$(\sim (\sim p)) \wedge q$ is equal to .........
$\sim p \wedge q$
$p \wedge q$
$p\; \wedge \sim q$
$\sim p\; \wedge \sim q$
(b)$(\sim (\sim p)) \wedge q = p \wedge q$.
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to
The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
The converse of the statement "If $p < q$, then $p -x < q -x"$ is –
Confusing about what to choose? Our team will schedule a demo shortly.