$\left( {p \wedge  \sim q \wedge  \sim r} \right) \vee \left( { \sim p \wedge q \wedge  \sim r} \right) \vee \left( { \sim p \wedge  \sim q \wedge r} \right)$ is equivalent to-

  • A

    $ \sim \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)} \right)$

  • B

    $p \vee q \vee r$

  • C

    $  \left( {\left( {p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p} \right)\left( {p \vee q \vee r} \right)} \right)$

  • D

    $\left( { \sim \left( {(p \wedge q} \right) \vee \left( {q \wedge r} \right) \vee \left( {r \wedge p)} \right) \wedge \left( {p \vee q \vee r} \right)} \right)$

Similar Questions

Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to

  • [JEE MAIN 2022]

If the Boolean expression $( p \wedge q ) \circledast( p \otimes q )$ is a tautology, then $\circledast$ and $\otimes$ are respectively given by

  • [JEE MAIN 2021]

Consider the two statements :

$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology

$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.

Then :

  • [JEE MAIN 2021]

The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to

  • [JEE MAIN 2023]

For the statements $p$ and $q$, consider the following compound statements :

$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$

$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$

Then which of the following statements is correct?

  • [JEE MAIN 2021]