Statement $p$ $\rightarrow$ ~$q$ is false, if
$p$ is true, $q$ is false
$p$ is false, $q$ is true
$p$ is false, $q$ is false
$p$ is true, $q$ is true
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to