Statement $p$ $\rightarrow$  ~$q$ is false, if

  • A

    $p$ is true, $q$ is false

  • B

    $p$ is false, $q$ is true

  • C

    $p$ is false, $q$ is false

  • D

    $p$ is true, $q$ is true

Similar Questions

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]

The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to

  • [JEE MAIN 2023]

The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to

  • [JEE MAIN 2023]

The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :

  • [JEE MAIN 2022]

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]