Gujarati
2. Electric Potential and Capacitance
hard

निम्न चित्र में आयत के दो शीर्षों पर आवेश ${q_1} =  - \,5\,\mu C$ तथा ${q_2} =  + \,2.0\,\mu C$ रखे गये हैं। बिन्दु $B$ से $ + \,3.0\,\mu C$ आवेश को $A$ तक लाने में किया गया कार्य......$J$ होगा $(1/4\pi {\varepsilon _0} = {10^{10}}\,N - {m^2}/{C^2})$

A

$2.8$

B

$3.5$

C

$4.5$

D

$5.5$

Solution

कार्य  $W = 3 \times {10^{ – 6}}({V_A} – {V_B});$ यहाँ

${V_A} = {10^{10}}\left[ {\frac{{( – 5 \times {{10}^{ – 6}})}}{{15 \times {{10}^{ – 2}}}} + \frac{{2 \times {{10}^{ – 6}}}}{{5 \times {{10}^{ – 2}}}}} \right] = \frac{1}{{15}} \times {10^6}\,volt$

एवं  ${V_B} = {10^{10}}\left[ {\frac{{(2 \times {{10}^{ – 6}})}}{{15 \times {{10}^{ – 2}}}} – \frac{{5 \times {{10}^{ – 6}}}}{{5 \times {{10}^{ – 2}}}}} \right] =  – \frac{{13}}{{15}} \times {10^6}\,volt$

$W = 3 \times {10^{ – 6}}\left[ {\frac{1}{{15}} \times {{10}^6} – \left( { – \frac{{13}}{{15}} \times {{10}^6}} \right)} \right]$= $2.8 \,J$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.