- Home
- Standard 11
- Physics
$1$ વાતાવરણ દબાણે $1 mm^{3} $ કદ ધરાવતા વાયુને તાપમાન $27°C$ થી $627°C$ સુધી દબાવવામાં આવે છે. સમોષ્મી પ્રક્રિયા પ્રમાણે અંતિમ દબાણ કેટલું હશે ? (વાયુ માટે $\gamma = 1.5$)
$27 × 10^{5}N/m^{2}$
$56 × 10^{5}N/m^{2}$
$36 × 10^{5}N/m^{2}$
$80 × 10^{5}N/m^{2}$
Solution
$P = 1 atm = 1 × 10^{5}N/m^{2}$
$T_1 = 27 + 273 = 300 K, T_2 = 627 + 273 = 900 K$
સમોષ્મી ફેરફાર માટે, $P^{1 -\gamma} T^{\gamma} =$ અચળ
$\therefore \,\,\,{P_1}^{1 – \gamma }{T_1}^\gamma = {P_2}^{1 – \gamma }{T_2}^\gamma \,\,\,\,\,\therefore \,\,{\left( {\frac{{{P_2}}}{{{P_1}}}} \right)^{1 – \gamma }} = {\left( {\frac{{{T_1}}}{{{T_2}}}} \right)^\gamma }$
$\therefore \,\,\,{\left( {\frac{{{P_2}}}{{{P_1}}}} \right)^{\gamma – 1}} = {\left( {\frac{{{T_2}}}{{{T_1}}}} \right)^\gamma }\,\,\,\,\,\,\,\therefore \,\,{\left( {\frac{{{P_2}}}{{{P_1}}}} \right)^{\frac{1}{2}}} = {\left( {\frac{{{T_2}}}{{{T_1}}}} \right)^{\frac{3}{2}}}$
$\therefore \,\,{\left( {\frac{{{P_2}}}{{{{10}^5}}}} \right)^{\frac{1}{2}}} = {\left( {\frac{{900}}{{300}}} \right)^{\frac{3}{2}}} = {(3)^{\frac{3}{2}}}\,\,\,\,\,\,\therefore \,\,\,\frac{{{P_2}}}{{{{10}^5}}} = {3^3}$
$\therefore \,\,\,{P_2} = 27 \times {10^5}N/{m^2}$