$1\, mm$ ત્રિજ્યાના લાંબા સુરેખ તાર પર વિદ્યુતભાર સમાન રીતે વિતરિત થયેલો છે. તારની પ્રતિ $cm$ લંબાઈ $Q$ દીઠ વિદ્યુતભાર $Q$ કુલંબ છે. $50\, cm$ ત્રિજ્યા અને $1\, m$ લંબાઈના તારથી સંમિત રીતે ઘેરાયેલો છે. નળાકાર ના પૃષ્ઠમાંથી પસાર થતું કુલ ફલક્સ .......... છે.
$\frac{Q}{{{ \in _0}}}$
$\frac{{100\,\,Q}}{{{ \in _0}}}$
$\frac{{10\,Q}}{{\pi \,\,{ \in _0}}}$
$\frac{{100\,Q}}{{\pi \,\,{ \in _0}}}$
એક લાંબા નળાકારમાં $\rho \;Cm ^{-3}$ ધનતા ધરાવતો વિદ્યુતભાર નિયમિત રીતે વહેંચાયેલો છે. $Vm ^{-1}$ હશે.નળાકારની અંદર તેની અક્ષથી $ x=\frac{2 \varepsilon_{0}}{\rho} \,m$ અંતરે વિદ્યુતક્ષેત્ર ગણો. વિદ્યુતક્ષેત્રનું મૂલ્ય ........ $Vm ^{-1}$ હશે.
એક અનંત રેખીય વિદ્યુતભાર $7 \,cm$ ત્રિજ્યાના અને $1 \,m$ લંબાઈના નળાકારની અક્ષ પાસે છે. જો નળાકારની વક્ર સપાટી પરના કોઈપણ બિંદુએ વિદ્યુતક્ષેત્ર $250 \,NC ^{-1}$ નળાકારમાંથી કુલ વિદ્યુત ફ્લક્સ .......... $Nm ^2 C ^{-1}$ છે.
સમઘનના કોઇ એક ખૂણા પર વિદ્યુતભાર $Q$ છે, તો આ સમઘનની બધી છ સપાટીઓમાંથી પસાર થતું કુલ ફલક્સ કેટલું હશે?
શાંત વાતાવરણમાં વિદ્યુતક્ષેત્ર તીવ્રતા $100 \,V / m$ છે, તો પૃથ્વીની સપાટી પર કુલ વિદ્યુતભાર .............. $C$ છે (પૃથ્વીની ત્રીજ્યા $6400 \,km$ છે.)
એકસમાન વિદ્યુતક્ષેત્ર $E = 3 \times {10^3}\hat i\;N/C$ નો વિચાર કરો.
$(a)$ $yz$ સમતલને સમાંતરે જેનું સમતલ હોય તેવા $10 \,cm$ ની બાજુવાળા ચોરસમાંથી આ ક્ષેત્રનું ફલક્સ કેટલું હશે? $(b)$ જો આ જ ચોરસના સમતલને દોરેલો લંબ $x$ -અક્ષ સાથે $60^{\circ}$ નો કોણ બનાવે તો તેમાંથી ફલક્સ કેટલું હશે?