બે બિંદુવત વિદ્યુતભારો $+ 8q$ અને $-2q $ $x = 0$ અને $x = L$ આગળ મૂકેલા છે. આ બે બિંદુવત વિદ્યુતભારોને લીધે $x -$ અક્ષ પરના બિંદુ આગળ ચોખ્ખું વિદ્યુત શૂન્ય ..... હશે.
$2L$
$L/4$
$8L$
$4L$
જો $g _{ E }$ અને $g _{ M }$ એ અનુક્રમે પૃથ્વી અને ચંદ્રની સપાટી પર ગુરુત્વપ્રવેગનાં મૂલ્યો હોય અને બંને સપાટ્ટી પર મિલિકાનનો પ્રયોગ કરવામાં આવે તો નીચેના ગુણોત્તરનું મૂલ્ય કેટલું થાય? ચંદ્ર પર વિદ્યુતભાર/પૃથ્વી પર વિદ્યુતભાર
એક બિંદુવત વીજભાર $q_1=4{q_0}$ ઉગમબિંદુ પર રાખેલ છે. બીજો બિંદુવત વીજભાર $q _2=- q _0,\;\; x=12\,cm$ પર રહેલ છે. પ્રોટોનનો વીજભાર $q_0$ છે પ્રોટોનને $x$ અક્ષ પર એવી રીતે રાખવામાં આવે છે કે જેથી પ્રોટોન પર સ્થિત વિદ્યુતબળ શૂન્ય છે. આ પરિસ્થિતિમાં, ઉગમબિંદુથી પ્રોટોનનું સ્થાન $............cm$ છે.
બે બિંદુવત વિદ્યુતભારો $q_2$ = $3 \times 10^{-6}\ C$ અને $q_1$ =$ 5 \times 10^{-6}\ C$ એ $B \,(3, 5, 1)\ m $ આગળ અને $A\, (1, 3, 2)\ m$ આવેલા છે. $q_2$ ના લીધે $q_1$ પર બળનું મૂલ્ય શોધો.
કુલંબના નિયમ પ્રમાણે નીચેની આકૃતિ માટે શું સાયું છે ?
બે વિદ્યુતભાર $+8q$ અને $-2q$ ને $x=0$ અને $x=L$ મુકતાં વિદ્યુતક્ષેત્ર કયાં બિંદુએ શૂન્ય થશે?