$20\, cm$ અને $15\, cm$ ત્રિજ્યાવાળા વાહકગોળા અહાવક સ્ટેનડ પર મૂકેલા છે. બંને ઉપર સમાન $10\ \mu C $ જેટલો વિદ્યતભાર છે. તેઓને તાંબાના તાર સાથે જોડીને અલગ કરતાં .....
બંને ગોળા પર સરખો વિદ્યુતભાર રહેશે.
$20\, cm$ ત્રિજ્યાવાળા ગોળા પર વિદ્યુતભાર પૃષ્ઠ ઘનતા વધારે હશે.
$20\, cm$ ત્રિજ્યાવાળા ગોળા પર વિદ્યુતભાર પૃષ્ઠ ઘનતા ઓછી હશે.
બંને ગોળા પર વિદ્યુતભાર પૃષ્ઠ ઘનતા સમાન હશે.
આકૃતિમાં ત્રણ સમકેન્દ્રિય ધાતુ કવચો દર્શાવેલ છે. સૌથી બહારના કવચ પર વિદ્યુતભાર $q_2$ છે. સૌથી અંદરના કવચ પર વિદ્યુતભાર $q_1$ છે અને વચ્ચેનું કવચ વિદ્યુતભાર રહિત છે. સૌથી બહારના કવચની અંદરની સપાટીએ વિદ્યુતભાર કેટલો છે?
$R$ અને $2 R$ ત્રિજ્યા ધરાવતા બે ધાતુના ગોળાની પૃષ્ઠવિજભાર ઘનતા $\sigma$ સમાન છે.તે બંનેને સંપર્કમાં લાવવામાં આવે છે અને પછી અલગ કરવામાં આવે છે.તો તેના પર નવી પૃષ્ઠવિજભાર ઘનતા કેટલી થશે?
જો નક્કર અને પોલા સુવાહક ગોળાની ત્રિજ્યા સમાન હોય તો,
$R$ અને $2R$ ત્રિજ્યા ધરાવતા બે અલગ કરેલા ધાત્વીય ગોળાઓને એવી રીતે વિદ્યુતભારિત કરવામાં આવે છે કે જેથી તરો સમાન વિદ્યુતભાર ઘનતા $\sigma$ હોય. આ બંને ગોળાઓને ત્યારબાદ પાતળા સુવાહક તારથી જોડવામાં આવે છે, ધારો કે મોટા ગોળા પરની નવી વિદ્યુતભાર ઘનતા $\sigma^{\prime}$ હોય તો, ગુણોતર $\frac{\sigma^{\prime}}{\sigma}=.......$ થશે.
$R_{1}$ અને $\mathrm{R}_{2}$ ત્રિજ્યા ધરાવતા બે વિદ્યુતભારિત ગોળાકાર સુવાહકોને એક તારથી જોડવામાં આવેલા છે. તો ગોળાઓની પૃષ્ઠ વિદ્યુતભાર ઘનતાઓનો ગુણોત્તર $\left(\sigma_{1} / \sigma_{2}\right)$ $.....$ છે.