- Home
- Standard 12
- Physics
$R$ અને $2R$ ત્રિજ્યા ધરાવતા બે અલગ કરેલા ધાત્વીય ગોળાઓને એવી રીતે વિદ્યુતભારિત કરવામાં આવે છે કે જેથી તરો સમાન વિદ્યુતભાર ઘનતા $\sigma$ હોય. આ બંને ગોળાઓને ત્યારબાદ પાતળા સુવાહક તારથી જોડવામાં આવે છે, ધારો કે મોટા ગોળા પરની નવી વિદ્યુતભાર ઘનતા $\sigma^{\prime}$ હોય તો, ગુણોતર $\frac{\sigma^{\prime}}{\sigma}=.......$ થશે.
$\frac{9}{4}$
$\frac{4}{3}$
$\frac{5}{3}$
$\frac{5}{6}$
Solution

$\frac{ Q _1^{\prime}}{4 \pi \varepsilon_0 R }=\frac{ Q _2^{\prime}}{4 \pi \varepsilon_0(2 R )}$
$\therefore Q _2^{\prime}=2 Q _1^{\prime}$
$Q _1^{\prime}+ Q _2^{\prime}= Q _1+ Q _2$
$\therefore \frac{ Q _2^{\prime}}{2}+ Q _2^{\prime}=20 \pi R ^2 \sigma$
$\frac{3}{2} Q _2^{\prime}=20 \pi R ^2 \sigma$
$\therefore \frac{ Q _2^{\prime}}{4 \pi(2 R )^2}=\frac{2}{3} \cdot \frac{20 \pi R ^2 \sigma}{16 \pi R ^2}$
$\therefore \frac{\sigma^{\prime}}{\sigma}=\frac{5}{6}$