- Home
- Standard 12
- Physics
અમુક પ્રદેશમાં વિદ્યુત સ્થિતિમાનને $V = 6x - 8xy^2 - 8y + 6yz - 4z^2\,volt$ સૂત્ર વડે નિરૂપવામાં આવે છે. ઉગમબિંદુ આગળ આવેલા $2\, C$ પરના વિદ્યુતભાર પર લાગતા બળનું મૂલ્ય ........$N$ હશે.
$2$
$6$
$8$
$20$
Solution
$\overrightarrow {\,E} \,\, = \,\, – \nabla V\,\, = \,\, – \left( {\frac{{\partial V}}{{\partial x}}\,\,\hat i\,\, + \,\,\frac{{\partial V}}{{\partial y}}\,\hat j\,\, + \,\,\frac{{\partial V}}{{\partial z}}\,\,\hat k} \right)$
$\frac{{\partial V}}{{\partial x}}\,\, = \,\,6\,\, – \,\,8{y^2}\,\,;\,\,\frac{{\partial V}}{{\partial y}}\,\, = \,\, – \,16xy\,\, – \,\,8\,\, + \;\,6z;$
$\frac{{\partial V}}{{\partial z}}\,\, = \,\,6y\,\, – \,\,8z$
$\overrightarrow E \,\, = \,\, – \,\,\left[ {\left( {6\,\, – \,\,8{y^2}} \right)\,\,\hat i\,\, – \,\,\left( {16xy\,\, + \;\,8\,\, – \,\,6z} \right)\,\,\hat j\,\, + \;\,\left( {6y\,\, – \,\,8z} \right)\,\hat k} \right]$
$\therefore \,\,{\overrightarrow E _{\left( {0,0.0} \right)}}\,\, = \,\, – \left( {6\hat i\,\, – \,\,8\hat j} \right)\,\,N/C$
${\left. {\overrightarrow E } \right|\,\, = \,\,\sqrt {36\,\, + \;\,64} \,\, = \,\,10\,\,N/C}$
$F\,\, = \,\,q\,\left| {\left. {\overrightarrow E } \right|\,\, = \,\,2\,\, \times \,\,10\,\, = \,\,20\,\,N} \right.$