- Home
- Standard 11
- Physics
3-1.Vectors
normal
$\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to $ નો પરિણામી $\mathop A\limits^ \to \,$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\mathop B\limits^ \to \,$ સાથે $\beta $ ખૂણો બનાવે તો .....
A
${\alpha} < \beta $
B
${\alpha} < \beta $ જો $ A < B $
C
${\alpha} < \beta $ જો $ A > B $
D
${\alpha} < \beta $ જો $ A = B $
Solution
Form the figure, component of resultant vector
$\overrightarrow{ A }=\overrightarrow{ R } \cos \alpha$
$\overrightarrow{ B }=\overrightarrow{ R } \cos \beta$
If $\alpha < \beta$
Then, $\cos \alpha > \cos \beta$
$\overrightarrow{ R } \cos \alpha > \overrightarrow{ R } \cos \beta$
Hence, hence, $\vec{A} > \vec{B}$
So, we can say that, if $\vec{A} > \vec{B}, \alpha < \beta$
Standard 11
Physics