English
Hindi
3-1.Vectors
normal

સદીશ ${\rm{\hat i}}\,\, + \,\,{\rm{\hat j}}\,\, + \;\,\sqrt {\rm{2}} \,\,\hat k$ નો દિશાકીય $\cos ine .......$ હોય.  

A

$\frac{1}{2},\,\frac{1}{2},\,1$

B

$\frac{1}{{\sqrt 2 }},\,\,\frac{1}{{\sqrt 2 }},\frac{1}{2}$

C

$\frac{1}{2},\frac{1}{2},\frac{1}{{\sqrt 2 }}$

D

$\frac{1}{{\sqrt 2 }},\,\,\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}$

Solution

Direction cosine of $\hat{a} \hat{i}+b \hat{j}+c \hat{k}$ can be given as

$\frac{ a }{\sqrt{ a ^2+ b ^2+ c ^2}}, \frac{ b }{\sqrt{ a ^2+ b ^2+ c ^2}} \frac{ c }{\sqrt{ a ^2+ b ^2+ c ^2}}$

Thus, here we have directional cosines as

$\frac{1}{\sqrt{1^2+1^2+(\sqrt{2})^2}}, \frac{1}{\sqrt{1^2+1^2+(\sqrt{2})^2}}$ $\frac{\sqrt{2}}{\sqrt{1^2+1^2+(\sqrt{2})^2}}$

$=\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.