$P\,\, = \,\,{\rm{Q}}\,\, = \,\,{\rm{R}}$ જો $\mathop {\,{\rm{P}}}\limits^ \to \,\, + \;\,\mathop {\rm{Q}}\limits^ \to \,\, = \,\,\mathop {\rm{R}}\limits^ \to \,$ હોય તથા $\mathop {\rm{P}}\limits^ \to $ અને $\mathop {\rm{R}}\limits^ \to $ વચ્ચેનો ખૂણો ${\theta _1}$ છે. જો $\mathop {\rm{P}}\limits^ \to \,\, + \;\,\mathop {\rm{Q}}\limits^ \to \,\, + \,\,\mathop {\rm{R}}\limits^ \to \,\, = \,\,\mathop {\rm{0}}\limits^ \to $ હોય તો $\mathop {\rm{P}}\limits^ \to $ અને $\mathop {\rm{R}}\limits^ \to $ વચ્ચેનો ખૂણો ${\theta _2}$ છે. ${\theta _1}$ અને ${\theta _2}$ વચ્ચેનો સંબંધ શું કહે ?
${\theta _1} ={\theta _2}$
${\theta _1} ={\theta _2}/2 $
${\theta _1}={2\theta _2}$
ઉપરોક્ત એક પણ નહિ
$\mathop A\limits^ \to - \mathop B\limits^ \to \,$ અને $\mathop B\limits^ \to - \mathop A\limits^ \to \,$ ના મૂલ્ય અને દિશા સમાન હોય ?
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=.......$
સદિશોના સરવાળા માટેની મહત્ત્વની શરત જણાવો.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
અલગ અલગ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે ?