બે સદિશોનું સમાન મૂલ્ય $5$ એકમ છે અને તેમના વચ્ચેનો ખૂણો $60^0$ છે. તે સદિશના પરિણામી સદિશનું મૂલ્ય....... અને તેનો એક સદિશમાંથી રચાતા ખૂણાનું મૂલ્ય ..... મળે.

  • A

    $2\sqrt 3 \,\,$ અને $ \,9{0^ \circ }$

  • B

    $3\sqrt 3 \,\,$ અને $\,6{0^ \circ }$

  • C

    $5\sqrt 3 \,$ અને $\,3{0^ \circ }$

  • D

    $4\sqrt 3 \,\,$ અને $\,9{0^ \circ }$

Similar Questions

વિધાન $A$ : જો $A, B, C, D$ એ અર્ધ વર્તુળ કેન્દ્ર $O$ પર ચાર બિંદુઓ એવા છે કે જેથી $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$ હોય, તો $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$

કારણ $R$ : સદીશ સરવાળાનો બહુકોણનો નિયમ $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$ આપે છે. 

ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી વધારે યોગ્ય જવાબ પસંદ કરો. 

  • [JEE MAIN 2021]

$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $a$ અને તેનું પરિકેન્દ્ર $O$ છે. If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ હોય તો $n =....$

વિધાન $I :$ બે બળો $(\overrightarrow{{P}}+\overrightarrow{{Q}})$ અને $(\overrightarrow{{P}}-\overrightarrow{{Q}})$, જ્યાં $\overrightarrow{{P}} \perp \overrightarrow{{Q}}$, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{1}$ ખૂણે હોય ત્યારે તેનું પરિણામી બળ $\sqrt{3\left({P}^{2}+{Q}^{2}\right)}$ મળે, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{2}$ ખૂણે હોય, ત્યારે તેનું પરિણામી $\sqrt{2\left({P}^{2}+{Q}^{2}\right)}$ મળે છે. આ માત્ર $\theta_{1}<\theta_{2}$ માટે શક્ય છે. 

વિધાન $II :$ ઉપર આપેલ પરિસ્થિતીમાં $\theta_{1}=60^{\circ}$ અને $\theta_{2}=90^{\circ}$ હોય.

આપેલ વિધાનોમાંથી સૌથી યોગ્ય જવાબ પસંદ કરો.

  • [JEE MAIN 2021]

આકૃતિમાં રહેલ સદિશ $\overrightarrow{ OA }, \overrightarrow{ OB }$ અને $\overrightarrow{ OC }$ ના મૂલ્ય સમાન છે. $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ ની $x$-અક્ષ સાથેની દિશા કેટલી થાય?

  • [JEE MAIN 2021]

$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.