બે સદિશોની બાદબાકીનો અર્થ શું કરી શકાય ?
$\vec A$ અને $\vec B $ નો પરિણામી સદીશ $\vec R_1$ છે . વિરુદ્ધ સદીશ $\vec B $ પર પરિણામી સદીશ $\vec R_2 $ બને તો ${\rm{R}}_{\rm{1}}^{\rm{2}}\,\, + \,\,{\rm{R}}_{\rm{2}}^{\rm{2}}$ નું મૂલ્ય શું હશે ?
એક સદિશ $\overrightarrow{O A}$ છે જેનું ઉગમ બિંદુ $O$ એ $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$ મુજબ આપી શકાય. છે. હવે તે વિષમઘડી દિશામાં $45^{\circ}$ ના $1$ ખૂણે $O$ ને અનુલક્ષીને ગતિ કરે, તો નવો સદિશ શું થશે ?
બે બળો $\overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના સરવાળાનું પરિણામી $\overrightarrow{\mathrm{R}}$ એવી રીતે મળે છે કે જેથી $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}| .$ તો $2 \overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના પરિણામી એ $\overrightarrow{\mathrm{Q}}$ સાથે બનાવેલો ખૂણો (ડિગ્રીમાં) કેટલો હશે?
જો કોઈ ભૌતિક રાશિનું મૂલ્ય શૂન્ય હોય, તો તે સદિશ હોઈ શકે ? યોગ્ય ઉદાહરણ આપો.
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$