- Home
- Standard 11
- Physics
$\,\left( {\,{\rm{2\hat i}}\,\, + \;\,{\rm{3\hat j}}\,\, + \;\,{\rm{\hat k}}\,} \right)\,\,\,$ અને $ \,\left( {\,\hat i\,\, - \,\,\hat j\,\, + \;\,2\hat k\,} \right)$ આ બે સદીશોની લંબ દિશા માનો એકમ સદીશ = ......
$\frac{1}{{\sqrt {67} }}\,\,\left( {7\hat i\,\, - \,\,3\hat j\,\, - \,\,5k} \right)$
$\frac{1}{{\sqrt {72} }}\,\,\left( {7\hat i\,\, + \,\,3\hat j\,\, - \,\,5k} \right)$
$\frac{1}{{\sqrt {79} }}\,\,\left( {7\hat i\,\, + \,\,3\hat j\,\, + \,\,5k} \right)$
$\frac{1}{{\sqrt {83} }}\,\,\left( {7\hat i\,\, - \,\,3\hat j\,\, - \,\,5k} \right)$
Solution
અદીશ $\mathop {\rm{A}}\limits^ \to \,\, = \,\,2\hat i\,\, + \;\,3\hat j\,\, + \;\,\hat k$ અને અદીશ $\mathop B\limits^ \to \,\, = \,\,\hat i\,\, – \,\,\hat j\,\, + \;\,2\hat k$
$\vec A $ અને $\vec B $ નો લંબ એકમ સદીશ $\hat n\, = \,\,\frac{{\mathop A\limits^ \to \,\, \times \,\,\mathop B\limits^ \to }}{{|\mathop A\limits^ \to \,\, \times \,\,\mathop B\limits^ \to |}}$
$\,\,\mathop A\limits^ \to \,\, \times \,\,\mathop B\limits^ \to \,\, = \,\,\left| {\left. {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k}\\
2&3&1\\
1&{ – 1}&2
\end{array}} \right|} \right.\,\, = \,\,\hat i\left( {6\,\, + \;\,1} \right)\,\, – \,\,\hat j\,\,\left( {4\,\, – \,\,1} \right)\,\, + \;\,\hat k\,\,\left( { – 2\,\, – \,\,3} \right)\,\, = \,\,7\hat i\,\, – \,\,3\hat j\,\, – \,\,5\hat k$
$\,|\mathop A\limits^ \to \,\, \times \,\,\mathop B\limits^ \to |\,\, = \,\,\sqrt {{7^2}\,\, + \;\,{{\left( { – 3} \right)}^2}\,\, + \;\,{{\left( { – 5} \right)}^2}} \,\, = \,\,\sqrt {83} $ એકમ
$\therefore \,\hat n\,\, = \,\,\frac{1}{{\sqrt {83} }}\,\,\left( {7\hat i\,\, – \,\,3\hat j\,\, – \,\,5k} \right)$