બે સદીશો $\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to \,$ હોય તો , $\mathop A\limits^ \to \, + \mathop B\limits^ \to \,\,\, = \,\,\mathop C\limits^ \to $ અને ${A^2}\,\, + \;\,{B^2}\,\, = {C^2}$ છે . નીચેના માંથી ક્યું વિધાન સાચું છે .
$\mathop A\limits^ \to \,$ એ $\mathop B\limits^ \to $ ને સમાંતર છે .
$\mathop A\limits^ \to \,$ એ $\mathop B\limits^ \to $ ને અસમાંતર છે .
$\mathop A\limits^ \to \,$ એ $\mathop B\limits^ \to $ ને લંબ છે .
$\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to $ ના મૂલ્યો સમાન છે .
એક ગતિમાન કણનું કોઈ $t$ સમયે સ્થાન $x = a\, t^2$ અને $y = b\, t^2$ વડે દર્શાવેલ છે. તો કણની ગતિ કેટલી હશે?
કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?
નીચે આપેલી જોડમાંથી કઇ જોડનું પરિણામી શૂન્ય ના થાય?
$ \vec A,\,\vec B $ અને $ \vec C $ ના મૂલ્યો અનુક્રમે $3, 4$ અને $5$ છે. જો $ \vec A + \vec B = \vec C $ હોય, તો $ \vec A $ અને $ \vec B $ વચ્ચે કેટલો ખૂણો થશે?
જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય