બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
${\cos ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$
${\cos ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$
${\sin ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$
${\sin ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$
$\mathop A\limits^ \to - \mathop B\limits^ \to \,$ અને $\mathop B\limits^ \to - \mathop A\limits^ \to \,$ ના મૂલ્ય અને દિશા સમાન હોય ?
ક્યાં સદિશને પરિણામી સદિશ $\mathop P\limits^ \to \,\, = \,\,2\hat i\,\, + \;\,7\hat j\,\, - \,\,10\hat k\,\,$ અને $\,\,\mathop Q\limits^ \to \,\, = \,\,\hat i\,\, + \;\,2\hat j\,\, + \;\,3\hat k$ માં ઉમેરવામાં આવે તો તે $X$- અક્ષની દિશામાં એકમ સદિશ આપે.
બે $F$ મૂલ્યના બળોના પરિણામી બળનું મૂલ્ય $F$ હોય તો તે બે બળો વચ્ચેનો ખૂણો ....... $^o$ હશે.
બે બળો જેના માપન મુલ્યો $8 \,N$ અને $15 \,N$ છે તે અનુક્રમે એક બિંદુ પર લાગુ પડે છે, જો લાગુ પડતું પરિણામી બળ $17 \,N$ હોય, તો આ બળો વચ્ચે બનતો ખૂણો કેટલો હશે?
સદિશોના સરવાળા માટે જૂથનો નિયમ સમજાવો. અથવા સાબિત કરો કે સદિશ સરવાળા માટે જૂથના નિયમનું પાલન થાય છે.