સમગુણોત્તર શ્રેણી ધન પદો ધરાવે છે. દરેક પદ બરાબર તે પછીના બે પદોનો સરવાળો તો શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?
$\frac{1}{2}\,\sqrt 5 $
$\sqrt 5 $
$\frac{1}{2}\,(\sqrt 5 \, - \,1)$
$\frac{1}{2}\,(1\, - \,\sqrt {5)} $
સમગુણોત્તર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $\frac{65}{12}$ અને તેમના વ્યસ્તનો સરવાળો $\frac{65}{18}$ છે. જે સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદનો ગુણાકાર $1$ અને ત્રીજુ પદ $\alpha$ હોય, તો $2 \alpha \,=.......$
એક સમગુણોત્તર શ્રેણીનું ત્રીજું પદ $24$ અને છઠું પદ $192$ છે તો તેનું $10$ મું પદ શોધો.
સમગુણોત્તર શ્રેણી $8 + 12 + 18 + 27 + …..$ ના $9$ મું પદ મેળવો.
ધારોકે $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ એ સમગુણોતર શ્રેણીમાં છે, જ્યાં $x_{1}=3$ અને સામાન્ય ગુણોત્તર $\frac{1}{2}$ છે. પ્રત્યેક $x_{i}$ ને $\left(x_{i}-i\right)^{2}$ વડે બદલી એક નવી માહિતી રચવામાં આવે છે. જો નવી માહિતીનો મધ્યક $\bar{x}$ હોય, તો $\bar{x}$ કે તેથી નાના તમામ પૂણાંકોમાં સૌથી મોટો પૂણાંક ............ છે.
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$