English
Hindi
8. Sequences and Series
hard

${{(0.2)}^{{{\log }_{\sqrt{5}}}\left( \frac{\text{1}}{\text{4}}\,+\,\frac{\text{1}}{\text{8}}\,+\,\frac{\text{1}}{\text{16}}\,+\,.....\,\infty  \right)}}$ નું મૂલ્ય:

A

$1$

B

$2$

C

$1/2$

D

$4$

Solution

અહીં $\frac{\text{1}}{\text{4}}\,+\,\frac{1}{8}\,+\,\frac{1}{16}\,+\,…..\,\infty \,$

$=\,\frac{\frac{1}{4}}{1-\frac{1}{2}}\,=\,\frac{1}{2}\,=\,{{2}^{-1}}$

$\therefore \,{{(0.2)}^{{{\log }_{\sqrt{5}}}\,\left( \frac{1}{4}\,+\,\frac{1}{8}\,+\,\frac{1}{16}\,+\,…\,\infty  \right)}}$

$\,=\,{{\left( \frac{1}{5} \right)}^{{{\log }_{\sqrt{5}}}2^{-1}}}$

$=\,{{\left( {{5}^{-1}} \right)}^{\frac{-1}{1/2}{{\log }_{5}}2}}$

$=\,\,{{5}^{2{{\log }_{5}}2}}\,\,\,=\,{{5}^{{{\log }_{5}}{{(2)}^{2}}}}\,=\,{{2}^{2}}\,\,=\,4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.