જો $x,\;y,\;z$ એ સમગુણોતર શ્નેણીમાંં હોય અને ${a^x} = {b^y} = {c^z}$ તે
${\log _a}c = {\log _b}a$
${\log _b}a = {\log _c}b$
${\log _c}b = {\log _a}c$
એકપણ નહિ
અહી $a_{n}$ એ ધન સમગુણોતર શ્રેણીનું $n^{\text {th }}$ મુ પદ દર્શાવે છે . જો $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ અને $\sum\limits_{n=1}^{100} a_{2 n}=100,$ તો $\sum\limits_{n=1}^{200} a_{n}$ મેળવો..
જો $a, b, c $ સમગુણોત્તર શ્રેણીમાં હોય, તો ........
અહી બે સમગુણોતર શ્રેણીઓ $2,2^{2}, 2^{3}, \ldots$ અને $4,4^{2}, 4^{3}, \ldots$ આપેલ છે કે જેમાં અનુક્રમે $60$ અને $n$ પદ આપેલ છે. જો બધાજ $60+n$ પદોનો સમગુણોતર મધ્યક $(2)^{\frac{225}{8}}$, હોય તો $\sum_{ k =1}^{ n } k (n- k )$ ની કિમંત મેળવો.
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : ${1, - a,{a^2}, - {a^3}, \ldots }$ પ્રથમ $n$ પદ