$155$ ના એવા ત્રણ ભાગ પાડો કે જેથી ત્રણેય સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં હોય અને પ્રથમ પદ એ તેના ત્રીજા પદ કરતાં $120$ ઓછું હોય.
$5, 65, 125$
$10, 65, 120$
$5, 25, 125$
આપેલ પૈકી એક પણ નહિ
સમાગુણોતર શ્રેણીનું $4$મું પદ $500$ છે અને તેનો સામાન્ય ગુણોતર $\frac{1}{m}, m \in N$ છે.ધારોકે આ સમગુણોતર શ્રેણીના પ્રથમ $n$ પદના સરવાળાને $S_n$ વડે દર્શાવાય છે.જો $S_6 > S_5+1$ અને $S_7 < S_6+\frac{1}{2}$ હોય,તો $m$ની શક્ય કિંમતોની સંખ્યા $.........$ છે.
એક સમગુણોત્તર શ્રેણીના $p$ માં, $q$ માં અને $r$ માં પદ અનુક્રમે $a, b, c$ હોય, તો $a^{q-r} . b^{r - p }. c^{p-q} = …….$
અનંત સમગુણોત્તર શ્રેણીના પદોનો સરવાળો $3$ અને તેમના વર્ગનો સરવાળો પદ $3$ થાય, તો શ્રેણીનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર કેટલો થાય?
જો $a $ અને $b$ વચ્ચેના સમગુણોત્તર મધ્યક $H$ હોય, તો $\frac{1}{{H\, - \,a}}\, + \,\frac{1}{{H - b}}$ નું મૂલ્ય કેટલું થાય ?
જો $\text{y}\,=\,{{\text{x}}^{\frac{\text{1}}{\text{3}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{9}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{27}}}}\,.....\,\infty $ હોય, તો $\text{y}\,=......$