જેના સામાન્ય ગુણોત્તર $3$ હોય તેવી $n$ પદવાળી સમગુણોત્તર શ્રેણીનાં $n$ પદનો સરવાળો $364$ હોય અને તેનું છેલ્લું પદ $243$ હોય, તો $n = ……$
$4$
$5$
$6$
$10$
ધારો કે ચાર જુદી જુદી ધન સંખ્યાઓ $a_2$, $a_2$, $a_3$, $a_4$ સમગુણોત્તર શ્રેણીમાં છે. $b_1$ = $a_1$, $b_2$ = $b_1$ + $a_2$, $b_3$ = $b_2$ + $a_3$ અને $b_4$ = $b_3$ + $a_4$ લો.
વિધાન $- I$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સમાંતર શ્રેણીમાં નથી કે સમગુણોત્તરમાં પણ નથી.
વિધાન $- II$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સ્વરીત શ્રેણીમાં છે.
જો $25, x - 6$ અને $x - 12$ સમગુણોત્તર શ્રેણીનાં ક્રમિક પદો હોય, તો $x = ….$
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$
સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદોનો સરવાળો $\frac{13}{12}$ છે. અને તેમનો ગુણોતર $-1$ છે. તો સામાન્ય ગુણોતર અને તે પદ શોધો.
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ અને દરેક પદ તેના પછીના પદોના સરવાળા જેટલું હોય, તો તેનું ચોથું પદ કયું હશે ?