આપેલ $a_1,a_2,a_3.....$ એ વધતી સમગુણોત્તર શ્રેણી છે કે જેનો સામાન્ય ગુણોત્તર $r$ છે તેના માટે જો $log_8a_1 + log_8a_2 +.....+ log_8a_{12} = 2014,$ હોય તો $(a_1, r)$ ની કિમત કેટલી જોડો મળે ?
$44$
$45$
$46$
$47$
એક સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $S$ હોય અને તેનો ગુણાકાર $27$ થાય તો તે બધા માટે $S$ ....... માં આવેલ છે
જો સમગુણોત્તર શ્રેણીના ચાર ધન ક્રમિક પદોના સરવાળા તથા ગુણાકાર અનુક્રમે $126$ અને $1296$ હોય, તો આવી દરેક સમગુણોત્તર શ્રેણીનાં સામાન્ય ગુણોત્તરોનો સરવાળો $.............$ છે.
ધારો કે $a$ અને $b$ એ બે ભિન્ન ધન વાસ્તવિક સંખ્યાઓ છે. જેનું પ્રથમ પદ $a$ અને ત્રીજું પદ $b$ હોય તેવી એક સમગુણોતર શ્રેણી ($G.P.$)નું $11$ મું પદ તથા જેનું પ્રથમ પદ $a$ અને પાંચમું પદ $b$ હોય તેવી એક બીજી $G.P.$ નું $p$ મું પદ સમાન છે. તો $p=$_______________.
સમગુણોત્તર શ્રેણીનાં $p,q,r$ માં પદો અનુક્રમે $a, b, c$ હોય તો સાબિત કરો કે,
$a^{q-r} b^{r-p} c^{p-q}=1$
$( - \pi ,\,\,\pi )\,\,$ આંતરલમાં સમીકરણ $\,{{\rm{(8)}}^{{\rm{(1}}\, + \,{\rm{|cosx|}}\, + \,|{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x| }} + {\rm{ |co}}{{\rm{s}}^{\rm{3}}}{\rm{x|}}\, + ......{\rm{)}}}}\,\, = \,\,{4^3}$ નો ઉકેલ ક્યો છે ?