$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી
$(I)$ જો $\alpha \in(-1,0)$, હોય તો $\mathrm{b}$ એ $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.
$(II)$ જો $\alpha \in(0,1)$ હોય તો $\mathrm{b}$ એ $a$ અને $c$ નો સમગુણોતર મધ્યક બની શકે.
બંને $(I)$ અને $(II) $ સાચા છે
બંને $(I)$ અને $(II) $ સાચા નથી
માત્ર $(II)$ જ સાચું છે
માત્ર $(I)$ જ સાચું છે
સમગુણોતર શ્રેણીનાં પ્રથમ અને બીજા પદનો સરવાળો $12$ હોય અને ત્રીજા અને ચોથા પદ નો સરવાળો $48$ છે. જો સમગુણોતર શ્રેણીના ક્રમિક પદો ધન અને ૠણ હોય તો શ્રેણીનું પ્રથમ પદ મેળવો.
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ છે. તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો $90$ છે. આ સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર શોધો.
જો સમગુણોત્તર શ્રેણીના દ્વિતીય, તૃતીય અને ચતુર્થ ધન પદોનો સરવાળો $3$ અને તેનો છઠ્ઠું, સાતમું અને આઠમા પદોનો સરવાળો $243$ હોય તો આ શ્રેણીમાં પ્રથમ $50$ પદો સુધીનો સરવાળો કેટલો થાય ?
જો $25, x - 6$ અને $x - 12$ સમગુણોત્તર શ્રેણીનાં ક્રમિક પદો હોય, તો $x = ….$
ધારો કે $A_{1}, A_{2}, A_{3}, \ldots$ એ ધન વાસ્તવિક સંખ્યાઓની વધતી સમગુણોત્તર શ્રેણી છે. જો $A _{1} A _{3} A _{5} A _{7}=\frac{1}{1296}$ અને d $A _{2}+ A _{4}=\frac{7}{36}$, હોય તો $A _{6}+ A _{8}+ A _{10}$ નું મૂલ્ય................