8. Sequences and Series
hard

$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ માટે , જો $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ અને $\alpha \neq 1$ એ એક બીજ હોય તો આપલે પૈકી બે વિધાન પૈકી 

$(I)$ જો $\alpha \in(-1,0)$, હોય તો  $\mathrm{b}$ એ  $\mathrm{a}$ અને $\mathrm{c}$ નો સમગુણોતર મધ્યક બની શકે નહીં.

$(II)$ જો  $\alpha \in(0,1)$ હોય તો  $\mathrm{b}$ એ $a$  અને  $c$ નો સમગુણોતર મધ્યક બની શકે.

A

બંને  $(I)$ અને $(II) $ સાચા છે

B

બંને  $(I)$ અને $(II) $ સાચા નથી

C

 માત્ર  $(II)$ જ સાચું છે 

D

 માત્ર  $(I)$ જ સાચું છે 

(JEE MAIN-2024)

Solution

$\mathrm{f}(\mathrm{x})=(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b}) $

$ \mathrm{f}(\mathrm{x})=\mathrm{a}+\mathrm{b}-2 \mathrm{c}+\mathrm{b}+\mathrm{c}-2 \mathrm{a}+\mathrm{c}+\mathrm{a}-2 \mathrm{~b}=0$

$ \mathrm{f}(1)=0 $

$\therefore \alpha \cdot 1=\frac{\mathrm{c}+\mathrm{a}-2 \mathrm{~b}}{\mathrm{a}+\mathrm{b}-2 \mathrm{c}} $

$ \alpha=\frac{\mathrm{c}+\mathrm{a}-2 \mathrm{~b}}{\mathrm{a}+\mathrm{b}-2 \mathrm{c}} $

$ \text { If, }-1<\alpha<0 $

$ -1<\frac{\mathrm{c}+\mathrm{a}-2 \mathrm{~b}}{\mathrm{a}+\mathrm{b}-2 \mathrm{c}}<0$

$\mathrm{b}+\mathrm{c}<2 \mathrm{a} \text { and } \mathrm{b}>\frac{\mathrm{a}+\mathrm{c}}{2}$
therefore, $\mathrm{b}$ cannot be G.M. between $\mathrm{a}$ and $\mathrm{c}$.
If, $0<\alpha<1$
$0<\frac{\mathrm{c}+\mathrm{a}-2 \mathrm{~b}}{\mathrm{a}+\mathrm{b}-2 \mathrm{c}}<1$
$\mathrm{b}>\mathrm{c}$ and $\mathrm{b}<\frac{\mathrm{a}+\mathrm{c}}{2}$
Therefore, $\mathrm{b}$ may be the $G.M.$ between $\mathrm{a}$ and $\mathrm{c}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.