વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$I$ એ વિધાન-$II$ ની સાચી સમજૂતી છે.
વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$II$ એ વિધાન-$I$ ની સાચી સમજૂતી નથી.
વિધાન-$I$ સાચું છે. વિધાન-$II$ ખોટું છે.
વિધાન- $I$ ખોટું છે. વિધાન- $II$ સાચું છે.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$
જો $a_1 , a_2, a_3, .... , a_n$ એ સમાંતર શ્રેણીમાં હોય અને જો $a_3 + a_7 + a_{11} + a_{15} = 72$ ,તો પ્રથમ $17$ પદનો સરવાળો મેળવો.
જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $x$ અને $y$ સમાંતર મધ્યક $a$ હોય તો તથા $y$ અને $z$ નો સમાંતર મધ્યક $b$ હોય તો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક ?
એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
જો સમાંતર શ્રેણીનું $10^{\text {th }}$ મુ પદ $\frac{1}{20}$ અને તેનું $20^{\text {th }}$ મુ પદ $\frac{1}{10},$ હોય તો પ્રથમ $200$ પદોનો સરવાળો મેળવો.