વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.

  • A

    વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$I$ એ વિધાન-$II$ ની સાચી સમજૂતી છે.

  • B

    વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$II$ એ વિધાન-$I$ ની સાચી સમજૂતી નથી.

  • C

    વિધાન-$I$ સાચું છે. વિધાન-$II$ ખોટું છે.

  • D

    વિધાન- $I$ ખોટું છે. વિધાન- $II$ સાચું છે.

Similar Questions

સાબિત કરો કે સમાંતર શ્રેણીમાં $(m + n)$ માં તથા $(m - n)$ માં પદોનો સરવાળો $m$ માં પદ કરતાં બમણો થાય છે. 

જો એક સમાંતર શ્રેણી $a_{1} a_{2}, a_{3}, \ldots$ ના પ્રથમ $11$ પદોનો સરવાળો $0\left(\mathrm{a}_{1} \neq 0\right)$ થાય અને સમાંતર શ્રેણી $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ પદોનો સરવાળો $k a_{1}$ થાય તો $k$ ની કિમત મેળવો 

  • [JEE MAIN 2020]

જો $^n{C_4},{\,^n}{C_5},$ અને ${\,^n}{C_6},$ એ સમાંતર શ્રેણીમાં હોય તો $n$ મેળવો.

  • [JEE MAIN 2019]

જો કોઈ સમાંતર શ્રેણી માટે $p^{th}$ અને $q^{th}$ પદ માટેનો સમાંતર મધ્યક તે જ શ્રેણીના $r^{th}$ અને $s^{th}$ ના સમાંતર મધ્યક જેટલો થાય તો $p + q$ ની કિમત મેળવો. 

  • [AIEEE 2012]

એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.