વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.

  • A

    વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$I$ એ વિધાન-$II$ ની સાચી સમજૂતી છે.

  • B

    વિધાન-$I$ સાચું છે. વિધાન-$II$ સાચું છે. વિધાન-$II$ એ વિધાન-$I$ ની સાચી સમજૂતી નથી.

  • C

    વિધાન-$I$ સાચું છે. વિધાન-$II$ ખોટું છે.

  • D

    વિધાન- $I$ ખોટું છે. વિધાન- $II$ સાચું છે.

Similar Questions

આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=3, a_{n}=3 a_{n-1}+2$ માટે $n\,>\,1$

જો $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ અને $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$ ના વિસ્તરણમાં મધ્યમ પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણીમાં છે અને $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $50-\frac{2 d}{\beta^{2}}$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

$1, 2, 4, 8, 16, .......2^n $ શ્રેણીનો સમાંતર મધ્યક :

$a + (a + d) + (a + 2d) + … + (a + 2nd)$ શ્રેણીનો સમાંતર મધ્યક કયો છે ?

આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ માટે $n\, \geq\, 2$