જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$
It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$
$\therefore a+b=3$ and $a b=p$ .......$(1)$
Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$
$\therefore c+d=12$ and $c d=q$ .........$(2)$
It is given that $a, b, c, d$ are in $G.P.$
Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$
From $(1)$ and $(2)$
We obtain $x+x y=3 \Rightarrow x(1+r)=3$
$x r^{2}+x^{3}=12$
$\Rightarrow x r^{2}(1+r)=12$
On dividing, we obtain
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$
When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$
Case $I:$ When $r=2$ and $x=1, \quad a b=x^{2} r=2, \quad c d=x^{2} r^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Case $II:$
When $r=-2, x=-3, a b=x^{2} r=-18, c d=x^{2} r^{5}=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$
જો અશૂન્ય સામાન્ય તફાવત સાથે સમાંતર શ્રેણીના $100$ માં પદના $100$ ગણા એ તેના $50$ માં પદના $50$ ગણા બરાબર હોય, તો તેનું $150$ મું પદ કયું હોય ?
જો કોઈ વાસ્તવિક $x$ માટે $1, \log _{10}\left(4^{x}-2\right)$ અને $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ એ સમાંતર શ્રેણીમાં હોય તો $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ ની કિમંત મેળવો.
જો $a$ અને $100$ ની વચ્ચે $n$ સમાંતર મધ્યકો મૂકવામાં આવે કે જેથી પ્રથમ મધ્યકનો અંતિમ મધ્યક સાથેનો ગુણોત્તર $1: 7$ અને $a + n =33$ થાય, તો $n$ ની કિમત ...............છે.
જો સમાંતર શ્રેણી નું $p$ મું પદ $q $અને $q $મું પદ $p$ હોય તો તેનું $n$ મું પદ ......છે.
શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :
${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$
આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો :