જો $1,\,{\log _9}\,\left( {{3^{1 - x}}\, + \,2} \right),\,\,{\log _3}\,\left( {{{4.3}^x}\, - \,1} \right)$
સમાંતર શ્રેણીમાં ,હોય તો ${\text{x = }}........$
$log_3\ 4$
$1 - log_3\ 4$
$1 - log_4\ 3$
$log_4\ 3$
આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું બીજું પદ $12$ હોય તો ચોથું પદ મેળવો.
જો $a, b, c,d$ સમગુણોત્તર શ્રેણીમાં હોય, તો સાબિત કરો કે $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ સમગુણોત્તર શ્રેણીમાં છે.
એક વ્યક્તિ તેની લોનની ચુકવણી માટે પ્રથમ હપતામાં $Rs.$ $100 $ ભરે છે. જો તે દર મહિને હપતાની રકમમાં $Rs \,5$ વધારે ભરે, તો તેના $30$ માં હપતામાં કેટલી રકમ ચૂકવશે?
અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો
ત્રણ ધન પુર્ણાકો $p, q, r \quad x^{p q^2}=y^{q r}=z^{p^2 r}$ અને $r = pq +1$ એવા છે કે જેથી $3,3 \log _y x, 3 \log _z y , 7 \log _x z$ સમાંતર શ્રેણીમાં (જ્યાં સામાન્ય તફાવત $\frac{1}{2}$ છે.) તો $r-p-q=..........$