જો $1,\,{\log _9}\,\left( {{3^{1 - x}}\, + \,2} \right),\,\,{\log _3}\,\left( {{{4.3}^x}\, - \,1} \right)$

સમાંતર શ્રેણીમાં ,હોય  તો ${\text{x  =  }}........$

  • A

    $log_3\ 4$

  • B

    $1 - log_3\ 4$

  • C

    $1 - log_4\ 3$

  • D

    $log_4\ 3$

Similar Questions

શ્રેણી $S = 1 -2 + 3\, -\, 4 … n$ પદો , માટે 

વિધાન $-1$ : શ્રેણીનો સરવાળો $n$ પર આધારિત છે , i.e. જ્યાં તે યુગ્મ કે અયુગ્મ હોય 

વિધાન $-2$ : શ્રેણીનો સરવાળો  $-\frac {n}{2}$  જ્યાં $n$ એ કોઈ યુગ્મ પૂર્ણાક છે 

ફિબોનાકી શ્રેણી,

$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.

$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.

$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.

  • [JEE MAIN 2024]

વધતી સમાંતર શ્રેણીમાં ચાર ક્રમિક પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો સરવાળો કેટલો થાય ?

અહી $S_{n}$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો દર્શાવે છે. જો $S_{3 n}=3 S_{2 n}$ હોય તો $\frac{S_{4 n}}{S_{2 n}}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]