જો $1,\,{\log _9}\,\left( {{3^{1 - x}}\, + \,2} \right),\,\,{\log _3}\,\left( {{{4.3}^x}\, - \,1} \right)$
સમાંતર શ્રેણીમાં ,હોય તો ${\text{x = }}........$
$log_3\ 4$
$1 - log_3\ 4$
$1 - log_4\ 3$
$log_4\ 3$
શ્રેણી $S = 1 -2 + 3\, -\, 4 … n$ પદો , માટે
વિધાન $-1$ : શ્રેણીનો સરવાળો $n$ પર આધારિત છે , i.e. જ્યાં તે યુગ્મ કે અયુગ્મ હોય
વિધાન $-2$ : શ્રેણીનો સરવાળો $-\frac {n}{2}$ જ્યાં $n$ એ કોઈ યુગ્મ પૂર્ણાક છે
ફિબોનાકી શ્રેણી,
$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.
$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.
$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
વધતી સમાંતર શ્રેણીમાં ચાર ક્રમિક પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો સરવાળો કેટલો થાય ?
અહી $S_{n}$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો દર્શાવે છે. જો $S_{3 n}=3 S_{2 n}$ હોય તો $\frac{S_{4 n}}{S_{2 n}}$ ની કિમંત મેળવો.