જો સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $Pn + Qn^2$ હોય જ્યાં $P,\,Q$ અચળ, હોય તો તેમનો સામાન્ય તફાવત કેટલો થાય ?
$2Q$
$P + Q$
$2P$
$P - Q$
અહી $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ એ સમાંતર શ્રેણીમાં છે. જો $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ હોય તો $\frac{a_{11}}{a_{10}}$ ની કિમંત મેળવો.
જો સમાંતર શ્રેણીના $p$ પદોનો સરવાળો તેના $q$ પદોના સરવાળા જેટલો હોય, તો તેના $(p +q)$ પદોનો સરવાળો કેટલો થશે ?
સમાંતર શ્રેણીનું $n$ મું પદ $3n - 1$ હોય, તો તેના પ્રથમ પાંચ પદોનો સરવાળો....... છે.
શ્રેણી $2, 5, 8, 11,…..$ ના $n$ પદોનો સરવાળો $60100$ હોય, તો $n = …..$
જો એક વધતી સમાંતર શ્રેણી $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ નો વિચરણ $90$ હોય તો આ સમાંતર શ્રેણીનો સામાન્ય તફાવત શોધો