જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_9}$ પદ શોધો : $a_{n}=(-1)^{n-1} n^{3}$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=7,$ we obtain

$a_{9}=(-1)^{9-1}(9)^{3}=(9)^{3}=729$

Similar Questions

$m \neq n$ માટે કોઈક સમાંતર શ્રેણીનું $m$ મું પદ $n$ અને $n$ મું પદ $m$ હોય, તો તેનું $p$ મું પદ શોધો.

ત્રણ સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં છે, તો તેના લઘુગુણક.......

જો સમાંતર શ્રેણીનું $19^{th}$ પદ શૂન્ય થાય તો ($49^{th}$ મુ પદ) : ($29^{th}$ મુ પદ) મેળવો, 

  • [JEE MAIN 2019]

કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:

  • [JEE MAIN 2017]

જો બહૂકોણનો અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાંં હોય અને નાનો ખૂણો ${120^o}$ છે,અને સામાન્ય તફાવત $5^o$ નો હોય તો બહૂકોણની બાજુની સંખ્યા મેળવો.     

  • [IIT 1980]