સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$ $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$
સમાંતર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $56 $ થાય અને તેના અંતિમ ચાર પદોનો સરવાળો $112$ થાય છે. જો તેનું પ્રથમ પદ $11$ હોય, તો તેના પદોની સંખ્યા કેટલી હશે ?
એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$ સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$ સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?
જો અશૂન્ય સામાન્ય તફાવત સાથે સમાંતર શ્રેણીના $100$ માં પદના $100$ ગણા એ તેના $50$ માં પદના $50$ ગણા બરાબર હોય, તો તેનું $150$ મું પદ કયું હોય ?
જો $log2, log (2^x - 1)$ અને $log (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો $x$ નું મૂલ્ય....... છે.