જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_9}$ પદ શોધો : $a_{n}=(-1)^{n-1} n^{3}$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=7,$ we obtain

$a_{9}=(-1)^{9-1}(9)^{3}=(9)^{3}=729$

Similar Questions

કોઇપણ ત્રણ ધન વાસ્તવિક સંખ્યાઓ $a,b,c$ માટે $9\left( {25{a^2} + {b^2}} \right) + 25\left( {{c^2} - 3ac} \right) = 15b\left( {3a + c} \right)$તો:

  • [JEE MAIN 2017]

ધારો કે  $3,7,11,15, \ldots, 403$ અને $2, 5, 8, 11, .,. 404$ એ બે સમાંતર શ્રેણીઓ છે. તો તેમાંના સામાન્ય પદોનો સરવાળો...................... છે. 

  • [JEE MAIN 2024]

જો $a, b, c $ સમાંતર શ્રેણીમાં હોય, તો $(a + 2b - c) . (2b + c - a)(a + 2b + c) = ….$

$1$ થી $100 $ વચ્ચેની $2$ અથવા $5$ વડે વિભાજ્ય સંખ્યાઓનો સરવાળો શોધો. છે. 

જો એક બહુકોણના બધા આંતરિક ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો મેળવો